
 “You Are Not
Expected to
Understand This”
How 26 Lines
of Code Changed
the World

Edited by Torie Bosch
With an introduction by Ellen Ullman
and illustrations by Kelly Chudler

Princeton University Press / Princeton & Oxford

Compilation and preface copyright © 2022 by Slate Magazine.
Essays and illustrations copyright © 2022 by Princeton University Press.

Princeton University Press is committed to the protection of copyright and the
intellectual property our authors entrust to us. Copyright promotes the progress
and integrity of knowledge. Thank you for supporting free speech and the global
exchange of ideas by purchasing an authorized edition of this book. If you wish to
reproduce or distribute any part of it in any form, please obtain permission.

Requests for permission to reproduce material from this work
should be sent to permissions@press.princeton.edu

Published by Princeton University Press
41 William Street, Princeton, New Jersey 08540
99 Banbury Road, Oxford OX2 6JX

press.princeton.edu

All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Names: Bosch, Torie, editor. | Chudler, Kelly S., illustrator. | Ullman, Ellen,
 writer of introduction.
Title: You are not expected to understand this : how 26 lines of code changed
 the world / edited by Torie Bosch ; with an introduction by Ellen Ullman
 and illustrations by Kelly Chudler.
Description: First edition. | Princeton : Princeton University Press, [2022] |
 Includes bibliographical references and index.
Identifiers: LCCN 2022013091 (print) | LCCN 2022013092 (ebook) |
 ISBN 9780691208480 (pbk. ; acid-free paper) | ISBN 9780691230818 (e-book)
Subjects: LCSH: Computer programming—Popular works. | Computer science—
 Social aspects—Popular works. | BISAC: COMPUTERS / Programming / General |
 SOCIAL SCIENCE / Technology Studies
Classification: LCC QA76.6 .Y585 2022 (print) | LCC QA76.6 (ebook) |
 DDC 005.13—dc23/eng/20220527
LC record available at https://lccn.loc.gov/2022013091
LC ebook record available at https://lccn.loc.gov/2022013092

British Library Cataloging- in- Publication Data is available

Editorial: Hallie Stebbins, Kristen Hop, and Kiran Pandey
Production Editorial: Natalie Baan
Text and Cover Design: Chris Ferrante
Production: Danielle Amatucci and Lauren Reese
Publicity: Kate Farquhar- Thomson and Sara Henning- Stout
Copyeditor: Michele Rosen

Page 132: Comic adapted from MonkeyUser, reproduced with permission.

This book has been composed in IBM Plex

Printed on acid- free paper. ∞

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents

Preface ix
Torie Bosch

Introduction 1
Ellen Ullman

 1 The First Line of Code 13
Elena Botella

 2 Monte Carlo Algorithms: Random Numbers in
Computing from the H- Bomb to Today 19
Benjamin Pope

 3 Jean Sammet and the Code That Runs the World 25
Claire L. Evans

 4 Spacewar: Collaborative Coding and the Rise of
Gaming Culture 31
Arthur Daemmrich

 5 BASIC and the Illusion of Coding Empowerment 38
Joy Lisi Rankin

 6 The First Email: The Code That Connected Us Online 44
Margaret O’Mara

 7 The Police Beat Algorithm: The Code That Launched
Computational Policing and Modern Racial Profiling 49
Charlton McIlwain

 8 “Apollo 11, Do Bailout” 56
Ellen R. Stofan and Nick Partridge

VI / CONTENTS

 9 The Most Famous Comment in Unix History:
“You Are Not Expected to Understand This” 63
David Cassel

 10 The Accidental Felon 69
Katie Hafner

 11 Internet Relay Chat: From Fish- Slap to LOL 75
Susan C. Herring

 12 Hyperlink: The Idea That Led to Another,
and Another, and Another 81
Brian McCullough

 13 JPEG: The Unsung Hero in the
Digital Revolution 86
Hany Farid

 14 The Viral Internet Image You’ve Never Seen 91
Lily Hay Newman

 15 The Pop- Up Ad: The Code That Made the
Internet Worse 96
Ethan Zuckerman

 16 Wear This Code, Go to Jail 102
James Grimmelmann

 17 Needles in the World’s Biggest Haystack:
The Algorithm That Ranked the Internet 108
John MacCormick

 18 A Failure to Interoperate: The Lost Mars
Climate Orbiter 113
Charles Duan

CONTENTS / VII

 19 The Code That Launched a Million Cat Videos 119
Lowen Liu

 20 Nakamoto’s Prophecy: Bitcoin and the
Revolution in Trust 124
Quinn DuPont

 21 The Curse of the Awesome Button 131
Will Oremus

 22 The Bug No One Was Responsible For—
Until Everyone Was 139
Josephine Wolff

 23 The Volkswagen Emissions Scandal:
How Digital Systems Can Be Used to Cheat 145
Lee Vinsel

 24 The Code That Brought a Language Online 151
Syeda Gulshan Ferdous Jana

 25 Telegram: The Platform That Became
“the Internet” in Iran 156
Mahsa Alimardani and Afsaneh Rigot

 26 Encoding Gender 162
Meredith Broussard

Acknowledgments 169

Notes 171

List of Contributors 189

Index 195

5
BASIC and the Illusion
of Coding Empowerment
Joy Lisi Rankin

During the first half of 1964, two college- age White men, John
McGeachie and Michael Busch, devoted hours to computer pro-
gramming. So much time, in fact, that McGeachie was known as
225, short for the GE- 225 mainframe computer for which he was
responsible, and Busch was known as 30, short for the GE Da-
tanet- 30 computer that he programmed. They were students at
Dartmouth, an elite, overwhelmingly White, Ivy League college
that admitted only men as undergraduates, and they were coding
a new computing network. In the early 1960s, McGeachie’s and
Busch’s access to technology was extraordinary.

In the 1960s, most mainframe computers ran on batch pro-
cessing. Programs were communicated to the machine through
inputs known as keypunch cards. Holes punched in the cards
communicated numbers, letters, and symbols to the computer.
One program often consisted of many cards. At the time, man-
agers sought to keep computers running as much as possible—
they were quite expensive, and organizations wanted to get their
money’s worth— so individual programs were grouped together
and run in large groups, known as batches. For example, before
Dartmouth acquired its own computer, Dartmouth professor
Tom Kurtz made daytrips by train to use the MIT computer, car-
rying with him a box full of punched cards encoding his and his
colleagues’ programs: economics models, physics simulations,
mathematical equations.

Typically, a computer operator handled the batch input pro-
cess, as well as retrieving output such as printouts. As a result,

THE ILLUSION OF EMPOWERMENT / 39

someone who wanted to create and run a computer program
had no interaction with the computer system itself— and they
could wait hours or days for the results of running their pro-
gram. This meant that the several thousand computers in the
United States in the early 1960s were out of reach of nearly ev-
eryone, especially young people. Even the computers installed
at universities were the province of a handful of faculty and
graduate students. That would soon change.

The men at Dartmouth sought to challenge those limits of ac-
cessibility and batch processing. Math professor John Kemeny
persuaded the trustees of the college that computing would be
essential for Dartmouth students as the future leaders of Amer-
ican science and industry. His fellow math professor Kurtz
envisioned a system where all students would be able to ac-
cess computers directly, without the delays and middlemen of
batch processing. Kurtz also imagined that computing would
be freely available to students as part of their college experi-
ence like unfettered library access— being able to browse and
pull books directly off the shelves, rather than submit a ticket
for someone else to retrieve a book. Finally, Kurtz believed that
Dartmouth could accomplish this by building a time- sharing
network.

Time- sharing was a new form of computing in the 1960s.
Time- sharing sounds like computer users were signing up for
blocks of computing time: Alice gets 15 minutes, then Bob gets
15 minutes after Alice. But it actually means programming a
mainframe computer to share its own time and computing re-
sources among multiple programs running at the same time.
In effect, this meant that multiple people could sit at individ-
ual terminals connected to one mainframe and write, run, and
debug their programs at the same time.

On the Dartmouth network, the individual terminals were
teletypewriter terminals that had been developed for telegraphy.
They looked like old- fashioned typewriters with large printers
built in. A user saw their program as they typed on the teletype,

40 / CHAPTER 5

and the computer communicated results to them by printing on
the teletype. Telephone wires connected teletypes to the main-
frame. This meant that terminals could be— and were— located
far from the network’s mainframe, even in another state or half-
way across the country.

In May 1964, the Dartmouth College Time- Sharing Sys-
tem, the early personal and social computing network that
McGeachie and Busch helped program, was launched with
the simultaneous and successful run of two BASIC programs.
BASIC was Beginner’s All- purpose Symbolic Instruction Code, a
computing language developed at Dartmouth under the guiding
principle that it should be easy to learn and use.

We don’t know exactly what those lines of BASIC code were.
We don’t even know who ran the two programs.¹ But we know
now that for three reasons, those BASIC programs made Amer-
ica’s digital culture possible by spreading personal computing
far, fast, and wide. The first and second reasons are fairly well
known: the revolutionary accessibility of Dartmouth’s computer
network and the radical ease of BASIC. The third reason is the
most important, yet has been overlooked: how BASIC limited
paths and possibilities.

Although building a computer network for undergraduate
use was visionary in the 1960s, it would not have been nearly
as successful if not for BASIC. BASIC and Dartmouth’s network—
and the rapid uptake of both— were inseparable. Computing
languages prior to BASIC, such as COBOL and FORTRAN, had
been developed for scientific, research, and business purposes.
They were not known for being easy to learn or user- friendly.
FORTRAN’s name came from FORmula TRANslation, reflecting
its intended use for math and science computing.

In 1967, a student at Williams College created a program
to score ski jump competitions— a challenging task that took
a team of faculty and students over three hours by hand. The
Williams student wrote his program in FORTRAN to run on
an IBM. He spent 50 hours writing it. Meanwhile that same

THE ILLUSION OF EMPOWERMENT / 41

year, an instructor at Vermont Academy created a program to
score an entire ski meet— ski jump plus cross- country, down-
hill, and slalom. The Vermont instructor wrote his program
in BASIC to run on Dartmouth’s network. He spent 10 hours
writing it.

Compared with languages like FORTRAN or COBOL, BASIC
was much faster and easier to learn. BASIC’s commands—
including IF- THEN, LET, PRINT, and READ— more closely resem-
bled everyday English. At Dartmouth, the combination of BASIC
and the time- sharing network enabled students to quickly write
and debug short programs, to experiment, to not be afraid of
making mistakes, especially because they could see the results
of their programs in seconds or minutes, not days or weeks.
They used BASIC for their coursework and to write letters home.
They produced computer art, simulated slot machines, and pro-
grammed and played games including chess, checkers, poker,
and slalom skiing. By 1968, 80 percent of Dartmouth students
regularly used the network and BASIC.

In that way, BASIC offered the illusion of coding empower-
ment. Consider the opening of this essay: sometime in May
1964, two men sat in front of two teletypes at Dartmouth, and
they successfully ran simultaneous BASIC programs on the col-
lege’s brand- new time- sharing network. The fact that they were
young White men at an elite, predominantly White college, is
central to this story, not incidental.

During the 1960s, many women and Black people worked in
computing. Before World War II, a computer was a person who
performed mathematical calculations. Computers worked in
business and scientific settings, and when computers became
machines, many women worked with computers: writing pro-
grams, translating business needs to computer applications as
systems analysts, operating keypunches and mainframes, and
filling similar roles across industries and academic disciplines.

A 1967 issue of Cosmopolitan magazine with the headline “The
Computer Girls” celebrated computing as “woman’s work.” In

42 / CHAPTER 5

Hidden Figures, the journalist Margot Lee Shetterly documents
how she “can put names to almost 50 black women who worked
as computers, mathematicians, engineers, or scientists at the
Langley Memorial Aeronautical Laboratory from 1943 through
1980.”² Likewise, the archivist Arvid Nelsen identifies at least
57 Black Americans working in computing between 1959 and
1996— just from the “Speaking of People” column in Ebony mag-
azine.³ As Claire Evans documents in her essay in this book,
well- known women like Jean Sammet and Grace Hopper were
not exceptions in early computing. Rather, they embodied the
fact that early machine computing was a feminine field.

That shifted during the last decades of the twentieth century,
when computing gained prestige in the United States and the
United Kingdom by becoming the realm of affluent White men.⁴
When Kemeny sold Dartmouth trustees on the idea that com-
puting was essential knowledge for the future American leaders
whom Dartmouth was producing, he was associating the power
of computing with both the Whiteness and the maleness of the
college. Requiring all first- year students taking math courses to
successfully write a BASIC program further cemented the re-
lationship among computing, Whiteness, affluence, and power
at Dartmouth.

When other schools and universities around New England
expressed interest in connecting to Dartmouth’s network during
the 1960s, Kemeny and Kurtz happily acquiesced. In fact, the
college even secured a National Science Foundation (NSF) grant
to support connecting 18 high schools around New England to
the Dartmouth network. Some high- schoolers regularly woke
at four in the morning to use the network.

But access to the Dartmouth network was by no means equal,
and it was generally young, wealthy, White men who benefit-
ted the most. Among the high schools connected to the Dart-
mouth network as part of the NSF Secondary Schools Project,
the coed public schools— all predominantly White— had only
40 hours of network time each week. By contrast, the private

THE ILLUSION OF EMPOWERMENT / 43

schools— which were all male, wealthy, and almost exclusively
White— had 72 hours of network time each week. In these years
before the expansion of educational opportunities for Ameri-
can women, high school boys were still enrolling in many more
math and science classes than high school girls. And it was in
those math and science classes that they gained access to com-
puting. During this decade of the Civil Rights Movement, Ameri-
cans were reckoning with the myriad ways in which their public
schools were separate but by no means equal. BASIC traveled in
an American educational system that was already segregated
by gender and race, so it ultimately amplified inequity in terms
of computing access.

Kemeny and Kurtz decided to make BASIC’s source code
freely available so that BASIC could be (and was) implemented
across many different makes and models of computers and
networks. BASIC programs were stored on networks, shared in
handwriting or by word of mouth, and soon circulated in books
and informal newsletters, including the popular People’s Com-
puter Company. BASIC originated the idea that programming was
something that just about anyone could do. And the echoes of
that unexamined assumption perpetuate the pernicious myth
today that all you need to do to succeed in tech is learn how to
code.⁵ BASIC made learning to code easy— but for whom?

